
The Rice Performance Tools

Rob Fowler
John Mellor-Crummey,

Monika Mevenkamp, Nathan Tallent, Gabriel Marin,
Xuesong Yuan, Jason Eckhard, Scott Warren, Lynn Wang

Center for High Performance Software
Rice University

Outline

• Background: Why we’re building performance tools.
• Goals
• Approach
• Success Stories, Status, and Future.
• Examples.

What we (Rice Parallel Compilers Group) do –
Code optimization

Aggressive (mostly source-to-source) compilation.
Hand application of optimizing transformations.

Try out transformations by hand first.
Work on real codes with algorithm, library, and application developers.

We spend a lot of time (too much?) analyzing executions. Why?
1. Deeply pipelined, out of order, superscalar processors with non-

blocking caches and deep memory hierarchies.
2. Aggressive (-O4) and/or idiosyncratic vendor compilers.

What we did –-
Built tools to meet our needs w.r.t. the run/analyze/tune cycle.
They were so useful that we are now distributing (one-on-one) them

In use at DoD, DoE, and NSF supercomputer facilities
Why I’m here --

To present the tools
To encourage collaborative work.

Background

Problems with Existing Performance Tools
Most tools are hard to use on big, complex, modular applications. Why?

Despite 25 years of experience, profilers, etc are dramatically underused.
Tools (feel like they) are designed to evaluate architectural features, or

operating systems, rather than for application tuning.

Tools have insufficient analytic power.
– Any one performance metric produces myopic view.

» Some metrics are causes. Some are effects. Comparisons required!
Ex. – misses, FLOPS, loads, mispredicts, cycles, stall cycles.

» Instruction balances (loads vs FLOPS vs integer ops vs branches).
» Fusion of compiler analysis, simulation, and counter profiles.

– Labor intensive analytic methodology is difficult and/or tedious.
» (Re-)inserting explicit instrumentation and recompiling.
» Manual correlation of data from multiple sources with source code.
» Aggregating per line data into larger scopes.
» Computing synthetic measures, e.g. loads/flop.

– Tune/reanalyze cycle slowed or prevented by manual intervention
and analysis.

More Problems

Language- or compiler-based tools restrict domain of
applicability
– Multi-language, multi-module (library.so) applications?
– Cross-platform, cross-compiler comparisons?

User Interface Issues
– GUI problems

» Vendor specific, both for target and analysis machines.
» Non-portable, non-collaborative visualization.
» Single-metric displays don’t capture underlying problems
» Need for block, loop-level, and user-defined scopes.

– Failure to make compelling cases.
Hard to convince application developers and/or management

with a fat stack of printouts and hand-generated notes.

Goal: Build Tools that We Will Use

• Intuitive, top-down user interface for performance analysis.
• Provide information needed for analysis and tuning.
• Platform and language (compiler) independence
• Eliminate manual labor from the analyze, tune, run cycle.

Approach
• Intuitive, top-down user interface for performance analysis.

– Use familiar hypertext browsing models.
• Provide information needed for analysis and tuning.

– Automatically compute derived performance metrics.
– Assimilate and combine data from multiple sources.

» Examples: FLOPS/cycle, miss ratios, (actual cycles – ideal), static
analyses.

» Filters and XMLwriter convert any “profile” into a standard format.
• Platform and language (compiler) independence

– Multiple data sources ! Cross Platform Comparisons
– Extract hierarchical program structure from (-g3) binaries.

» Handle multiple languages: F77, F9x, C, C++, …
» Use compiler-generated symbol table and object ! source maps.
» Permits analysis of libraries, including dynamically loaded.

• Eliminate manual labor from the analyze, tune, run cycle.
– Computation of derived metrics.
– Drive the process with scripts and configuration files.

The components of the HPCView Toolbox

hpcview ! creates performance database from sources, profiles,
structure information.

Netscape, Internet Explorer ! initial user interface (static data)
hpcviewer ! Java-based viewer
bloop ! extracts structure from binaries

» Based on EEL, distribution restricted.
open_analysis ! extracts structure from binaries

» Uses Open64 infrastructure, Rice analysis ! GPLable
ptran, ProfileWriter ! convert/write data in standard format
hpcprof ! cprof for Linux that generates XML files directly

» Cprof output not intended for down stream analysis
xprof ! prof extended to handle code replication

» Converts DCPI/ProfileMe output
» Better attribution for templates, includes, compiler replicated code

msgprof ! Compatible profiling of library calls that can block, e.g. MPI.
Scripts and makefiles ! glue necessary for automation

Status

hpcview ! v2.01 “in production”, v2.1 in alpha test
Netscape, Internet Explorer ! available everywhere
hpcviewer !v1.0 in alpha test, Java portability issues surprise us!
bloop ! distributed to Gov. Labs.
open_analysis ! first use this week
ptran, ProfileWriter ! production: ssrun, uprofile, static analyses
hpcprof ! alpha test on P2 and P3 boxes. Depends on PAPI, etc.
xprof ! works for DCPI/ProfileMe, but consumer tools not started
msgprof ! being used in GrADS project. Distributable some day.
Scripts and makefiles ! an expanding set

Near Future

hpcview ! v2.01 “in production”, v2.1 in alpha test (release in weeks)
Netscape, Internet Explorer ! available everywhere
hpcviewer !v1.0 in alpha test, Java portability issues surprise us!

(release in weeks to friendly users for use on Windows)
bloop ! distributed to Gov. Labs. (also to EEL licence holders)
open_analysis ! first use this week (release in May)
ptran, ProfileWriter ! production: ssrun, uprofile, static analyses
hpcprof ! alpha test on P2 and P3 boxes. Depends on PAPI, etc.

(will release with v2.1 of hpcview)
xprof ! works for DCPI/ProfileMe, but consumer tools not started

(looking for a student)
Scripts and makefiles ! an expanding set

Successes and ???

• The tool suite is in daily use at Rice.
– NCOMMAS project, among others.

• Successful ongoing use at Sandia and LANL.
These have been the results of “hands-on deployment”.
– ASCI codes and “compact applications”
– Proprietary codes.
– Science applications: Ocean Modelling, Quantum Chemistry.

• Version(s) have been made available at NCSA, but haven’t caught
on.

source pane

Children (loops and stmts)

This Loop
Enclosing Loop

flat, per line view

big parallel cosmology code.

1% spent in sock_msg_avail_on_fd

No real hotspots.

Comparison of the number
of graduated loads on a MIPS
R10K vs a R12K on the same
input and binary.

Estimate stall cycles by
comparing actual vs ideal
cycles a la MTOOL

How much better is an EV67?

This question is ill formed for
program units that are too
small. Compilation issues,
hardware cost attribution, etc.

Placeholder for one or two HPCView Screenshots of ASCI Benchmarks and Apps.

Indices reordered!

Thought for the Day

The Hitchiker's Guide to the Galaxy, in a moment of reasoned
lucidity which is almost unique among its current tally of five
million, nine hundred and seventy-three thousand, five hundred
and nine pages, says of the Sirius Cybernetics Corporation
products that “It is very easy to be blinded to the essential
uselessness of them by the sense of achievement you get from
getting them to work at all. In other words - and this is the
rock-solid principle on which the whole of the Corporation's
galaxywide success is founded -- their fundamental design flaws
are completely hidden by their superficial design flaws.”

(Douglas Adams, "So Long, and Thanks for all the Fish")

Contacts

NCSA activities: http://www.cs.rice.edu/~dsystem/ncsa/index.htm
HPCView tools: http://www.cs.rice.edu/~dsystem/hpcview/

Group: hpc@cs.rice.edu
Rob: rjf@rice.edu

John: johnmc@rice.edu
David: whalley@cs.fsu.edu

